
Complex Networks 
connections, measurements, and social systems

Sune Lehmann
- Associate Professor, DTU Compute. Technical University of Denmark. 
- Adjunct Associate Professor, Niels Bohr Institute. University of Copenhagen 
- @suneman







I am slightly obsessed with data quality



Monitored “Midwest” for 25 years, using grad students, 
research assistants, wives - equipped with pen and paper.

Roger G. Barker



Deb Roy



Human Speechome Project 

• 11 fisheye lens cameras + motion sensors. 
• 14 omnidirectional microphones 
• 1000m wires connect recorders to servers in basement 
• Record from 8am -10pm every day for 3 years
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Human Speechome in numbers 

• 90,000 hours of video recorded 
• 140,000 hours of audio recordings 
• Approx 200GB of data collected every day 
• 150 TB of raw data collected over course of project 
• 70% of infants waking hours captured 
• 10 to 12m words spoken 
• 4m words so far transcribed
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•proximity via Bluetooth 
•telecommunication 
•social networks 
•geolocation 

•demographics & personality 
•live questionnaires



Credit goes to these guys (and others)



We started the project in January 2012, 
so what do we have to show for it?

- Ran a 200 person beta-test in September 2012. 
- Rolled out the full 1000 person experiment in 

September 2013.

- Lots of initial work on technology: phone software, 
backend, visualizations 

- Scientific focus so far has been  
- understanding probes, 
- privacy. 

- Now we’re slowly starting to do “real science”.



interests 

• mathematical models for human interactions 
• sampling/relationship between interaction 

channels 
• spreading processes. information/epidemics 
• privacy 
• the technical component



the data is flowing
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Abstract

This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of
communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study.
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state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the
motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the
technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures.
We document the participant privacy procedures and their underlying principles. The paper is concluded with early results
from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.
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Introduction

Driven by the ubiquitous availability of data and inexpensive
data storage capabilities, the concept of big data has permeated
the public discourse and led to surprising insights across the
sciences and humanities [1,2]. While collecting data may be
relatively easy, it is a challenge to combine datasets from multiple
sources. This is in part due to mundane practical issues, such as
matching up noisy and incomplete data, and in part due to
complex legal and moral issues connected to data ownership and
privacy, since many datasets contain sensitive data regarding
individuals [3]. As a consequence, most large datasets are
currently locked in ‘silos’, owned by governments or private
companies, and in this sense the big data we use today are
‘shallow’—only a single or very few channels are typically
examined.

Such shallow data limit the results we can hope to generate from
analyzing these large datasets. We argue below (in Motivations
Section) that in terms of understanding of human social networks,
such shallow big data sets are not sufficient to push the boundaries
in certain areas. The reason is that human social interactions take
place across various communication channels; we seamlessly and
routinely connect to the same individuals using face-to-face
communication, phone calls, text messages, social networks (such
as Facebook and Twitter), emails, and many other platforms. Our
hypothesis is that, in order to understand social networks, we must
study communication across these many channels that are
currently siloed. Existing big data approaches have typically

concentrated on large populations (O(105){O(108)), but with a
relatively low number of bits per participant, for example in call
detail records (CDR) studies [4] or Twitter analysis [5]. Here, we
are interested in capturing deeper data, looking at multiple
channels from sizable populations. Using big data collection and
analysis techniques that can scale in number of participants, we
show how to start deep, i.e. with detailed information about every
single study participant, and then scale up to very large
populations.

We are not only interested in collecting deep data from a large,
highly connected population, but we also aim to create a dataset
that is collected interactively, allowing us to change the collection
process. This enables us to rapidly adapt and change our collection
methods if current data, for example, have insufficient temporal
resolution with regard to a specific question we would like to
answer. We have designed our data collection setup in such a way
that we are able to deploy experiments. We have done this because
we know that causal inference is notoriously complicated in
network settings [6]. Moreover, our design allows us to perform
continuous quality control of the data collected. The mindset of
real-time data access can be extended beyond pure research,
monitoring data quality and performing interventions. Using the
methods described here, we can potentially use big data in real
time to observe and react to the processes taking place across
entire societies. In order to achieve this goal, researchers must
approach the data in the same way large Internet services do—as a
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be corrected with redundant data, compels the researcher to make
mostly arbitrary choices as part of the analysis, complicating
subsequent analysis, especially when no well-established ground
truth is available to understand the bias. Our goal here is to collect
evenly sampled high-quality data for all the participants, so we do
not have to discard anyone; an impossible goal, but one worth
pursuing.

Since we only record data from a finite number of participants,
our study population is also a subset, and every network we
analyze will be sampled in some way, see [117] for a review on
sampling. While the 2013 deployment produces a dataset that is
nearly complete in terms of communication between the
participants, it is clear that it is subject to other sampling-related
issues. For example, a relatively small network embedded in a
larger society has a large ‘surface’ of links pointing to the outside
world, creating a boundary specification problem [118].

Dynamics
The networks and behaviors we observe are not static; rather

they display dynamics on multiple time-scales. Long-term
dynamics may be lost in big data studies when the participants
are not followed for a sufficiently long period, and only a relatively
narrow slice of data is acquired. Short-term dynamics may be
missed when the sampling frequency is too low.

It is a well-established fact that social networks evolve over time
[8,119]. The time scale of the changes varies and depends on
many factors, for example the semester cycle in students’ life,
changing schools or work, or simply getting older. Without
following such dynamics, and if we focus on a single temporal slice,
we risk missing an important aspect of human nature. To capture
it, we need long-term studies, that follow participants for months
or even years.

Our behavior is not static, even when measured for very short
intervals. We have daily routines, meeting with different people in
the morning and hanging out with other people in the evening, see
Figure 1. Our workdays may see us going to places and interacting
with people differently than on weekends. It is easy to miss
dynamics like these when the quality of the data is insufficient,
either because it has not been sampled frequently enough or
because of poor resolution, requiring large time bins.

Because each node has a limited bandwidth, only a small
fraction of the network is actually ‘on’ at any given time, even if
the underlying social network is very dense. Thus, to get from
node A to node B, a piece of information may only travel on links
that are active at subsequent times. Some progress has been made
on the understanding of dynamic networks, for a recent review see
[120]. However, in order to understand the dynamics of our highly
dense, multiplex network, we need to expand and adapt the

current methodologies, for example by adapting the link-based
viewpoint to dynamical systems.

Feedback
In many studies, the data collection phase is separated from the

analysis. The data might have been collected during usual
operation, before the idea of the study had even been conceived
(e.g. CDRs, WiFi logs), or access to the data might have not been
granted before a single frozen and de-identified dataset was
produced.

One real strength of the research proposed here is that, in
addition to the richness of the collected data, we are able to run
controlled experiments, including surveys distributed via the
smartphone software. We can, for example, divide participants
into sub-populations and expose them to distinct stimuli,
addressing the topic of causality as well as confounding factors
both of which have proven problematic [64,121] for the current
state-of-the-art [122,123].

Moreover, we monitor the data quality not only on the most
basic level of a participant (number of data points) but also by
looking at the entire live dataset to understand if the quality of the
collected data is sufficient to answer our research questions. This
allows us to see and fix bugs in the data collection software, or
learn that certain behaviors of the participants may introduce bias
in the data: for example after discovering missing data, some
interviewed students reported turning their phones off for the night
to preserve battery. This allowed us to understand that, even if in
terms of the raw numbers, we may be missing some hours of data
per day for these specific participants, there was very little
information in that particular data anyway.

Building systems with real-time data processing and access
allows us to provide the participants with applications and services.
It is an important part of the study not only to collect and analyze
the data but also to learn how to create a feedback loop, directly
feeding back extracted knowledge on behavior and interactions to
the participants. We are interested in studying how personal data
can be used to provide feedback about individual behavior and
promote self-awareness and positive behavior change, which is an
active area of research in Personal Informatics [124]. Applications
for participants create value, which may be sufficient to allow us to
deploy studies without buying a large number of smartphones to
provide to participants. Our initial approach has included the
development and deployment of a mobile app that provides
feedback about personal mobility and social interactions based on
personal participant data [125]. Preliminary results from the
deployment of the app, participant surveys, and usage logs suggest
an interest in such applications, with a subset of participants
repeatedly using the mobile app for personal feedback [126]. It is

Figure 1. Dynamics of face-to-face interactions in the 2012 deployment. The participants meet in the morning, attend classes within four
different study lines, and interact across majors in the evening. Edges are colored according to the frequency of observation, ranging from low (blue)
to high (red). With 24 possible observations per hour, the color thresholds are respectively: blue (0v observations ƒ6), purple (6v observations
ƒ12), and red (v12 observations). Node size is linearly scaled according to degree.
doi:10.1371/journal.pone.0095978.g001

Measuring Large-Scale Social Networks with High Resolution
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Figure 11. Daily activations in three networks. One day (Friday) in a network showing how
di↵erent views are produced by observing di↵erent channels.

di↵erence in edges, the online network still contains valuable information about social interactions which
the face-to-face network misses—red edges in Figure 12.

Face-to-faceOnline Extra Info. F2FExtra Info. Online

Figure 12. Face-to-face and online activity. Figure shows data from the 2013 deployment for one
representative week. Online: Interactions (messages, wall posts, photos, etc.) between users on
Facebook. Face-to-Face: Only the most active edges, which account for 80% of all tra�c, are shown
for clarity. Extra Info. F2F: Extra information contained in the Bluetooth data shown as the
di↵erence in the set of edges. Extra Info. Online: Additional information contained in the Facebook
data.
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on temporal networks [44, 154,155].
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Figure 4. Dynamics of face-to-face interactions in the 2012 deployment. The participants
meet in the morning, attend classes within four di↵erent study lines, and interact across majors in the
evening. Edges are colored according to the frequency of observations, ranging from low (blue) to high
(red). Node sizes are scaled according to degree.

Figure 5. Weekly temporal dynamics of interactions. Face-to-face interaction patterns of
participants in 5-minute time-bins over two weeks. Only active participants are included, i.e. users that
have either observed another person or themselves been observed in a given time-bin. On average we
observed 29 edges and 12 nodes in 5-minute time-bins and registered 10 634 unique links between
participants.

7.2 WiFi as Additional Channel for Social Ties

For the last two decades, wireless technology has transformed our society to the degree where every city in
the developed world is now fully covered by mobile [156] and wireless networks [157]. The data collector
application for mobile phones was configured to scan for wireless networks in constant intervals, but also
to record the results of scans triggered by any other application running on the phone (‘opportunistic’
sensing). Out of the box, Android OS scans for Wifi every 15 seconds, and since we collected these
data, our database contains 42 692 072 WiFi observations, with 142 871 unique networks (SSIDs) between
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We point out that the call and SMS dynamics display patterns that are quite distinct from face-to-
face interactions between participants showed in Figure 5. Although calls and SMS communication is
di↵erent on the weekends, the di↵erence is not as dramatic as in the face-to-face interactions between
the participants. This indicates that the face-to-face interactions we observe during the week are driven
primarily by the university work, and only few of those ties manifest during the weekends, even as the
participants are clearly socially active, sending and receiving calls and messages.

Figure 10. Weekly temporal dynamics of interactions. All calls and SMS’, both incoming and
outgoing calculated over the entire dataset and averaged per user and per week, showing mean number
of interactions users had in given weekly bin. Light gray denotes 5pm, the end of lectures at the
university, dark gray covers night between 12am and 8am. SMS is used more for communication outside
regular business hours.

In Figure 11 we focus on a single day (Friday) and show activation of links between participants
in three channels: voice calls, text messages, and face-to-face meetings. The three networks show very
di↵erent views of the participants’ social interactions.

7.5 Online friendships

The past years have witnessed a shift in our interaction patterns, as we have adapted new forms of
online communication. Facebook is to date the largest online social community with more than 1 billion
users worldwide [167]. Collecting information about friendship ties and communication flows allows us to
construct a comprehensive picture of the online persona. Combined with other recorded communication
channels we have an unparalleled opportunity to piece together an almost complete picture of all major
human communication channels. In the following section we consider Facebook data obtained from the
2013 deployment since, in contrast to the first deployment, we also collected interaction data. For a
representative week (Oct. 14 - Oct. 21, 2013) we collected 155 interactions (edges) between 157 nodes,
yielding an average degree hdi = 1.98, average clustering hci = 0.069, and average shortest path in the
giant component (86 nodes) hli = 6.52. The network is shown in the left most panel of Figure 12. By
comparing with other channels we can begin to understand how well online social networks correspond
to real life meetings. The corresponding face-to-face network (orange) is shown in Figure 12, where weak
links, i.e. edges with fewer than 147 observations (20%) are discarded. Corresponding statistics are for
the 307 nodes and 3 217 active edges: hdi = 20.96, hci = 0.71, and hli = 3.2. Irrespective of the large
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observed 29 edges and 12 nodes in 5-minute time-bins and registered 10 634 unique links between
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7.2 WiFi as Additional Channel for Social Ties

For the last two decades, wireless technology has transformed our society to the degree where every city in
the developed world is now fully covered by mobile [156] and wireless networks [157]. The data collector
application for mobile phones was configured to scan for wireless networks in constant intervals, but also
to record the results of scans triggered by any other application running on the phone (‘opportunistic’
sensing). Out of the box, Android OS scans for Wifi every 15 seconds, and since we collected these
data, our database contains 42 692 072 WiFi observations, with 142 871 unique networks (SSIDs) between
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7.6 Personality traits

While the data from mobile sensing and online social networks provide insights primarily into structure
of social ties, we are also interested in the demographics, psychological and health traits, and interests of
the participants. Knowing those characteristics, we can start answering questions about the reasons for
the observed network formation; why are the ties created and what drives their dynamics? For example,
homophily plays a vital role in how we establish, maintain, and destroy social ties [168].

Within the study, participants answered questions covering the aforementioned domains. Those
included a widely used Big Five Inventory [136] measuring five broad domains of human personality
traits—openness, extraversion, neuroticism, agreeablenes, and conscientiousness. The traits are scored
on a 5-point Likert-type scale (low to high) and the average score of questions related to each personality
domain are calculated.

As Big Five has been collected for various populations, including representative sample from Ger-
many [169] and students from western Europe [170], we report the results from 2012 deployment in
Figure 13 to show that our population is unbiased with respect to those important traits.

Figure 13. Personality traits Violin plot of personality traits. Summary statistics are: openness
µO = 3.58, �O = 0.52; extraversion µE = 3.15, �E = 0.53; neuroticism µN = 2.59 �N = 0.65;
agreeablenes µA = 3.64 �A = 0.51; conscientiousness µC = 3.44 �C = 0.51. Mean values from our
deployment (red circles) compared with mean values reported in [169] (orange diamonds).

8 Perspectives

We expect that the amount of data collected about human beings will continue to increase. New and
better services will be o↵ered to the users, more e↵ective advertising will be implemented, and researchers
will be learning more about the human nature. As the complexity and scale of studies on social systems
studies grows, collection of high-resolution data for studying human behavior will become increasingly
challenging on multiple levels, even when o↵set by the technical advancements. Technical preparations,
administrative tasks, and tracking data quality are a substantial e↵ort for an entire team, before even
considering the scientific work of data analysis. It is thus an important challenge for the scientific
community to create and embrace re-usable solutions, including best practices in privacy policies and
deployment procedures, supporting technologies for data collection, handling, and analysis methods.
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using MongoDB. Participants can see the status and change their
authorizations on the portal site, the system included an
implementation of the Living Informed Consent [3].

Deployment Methods
Organizing studies of this size is a major undertaking. All parts

from planning to execution have to be synchronized, and below
we share some considerations and our approaches. While their
main purpose was identical, the two deployments differed greatly
in size and therefore also in the methods applied for enrolling and
engaging the participants.

SensibleDTU 2012. In 2012 approximately 1,400 new
students were admitted to the university, divided between two
main branches of undergraduate programs. We focused our efforts
on the larger branch containing 900 students, subdivided into 15
study lines (majors). For this deployment we had *200 phones

available to distribute between the students. To achieve maximal
coverage and density of the social connections, we decided to only
hand out phones in a few selected majors that had a sufficient
number of students interested in participating in the experiment.
Directly asking students about their interest in the study was not a
good approach, as it could lead to biased estimates and would not
scale well for a large number of individuals. Instead, we appealed
to the competitive element of human nature by staging a
competition, running for two weeks from the start of the semester.
All students had access to a web forum, which was kept separate
for each major, where they could post ideas that could be realized
by the data we would collect, and subsequently vote for their own
ideas or three seed ideas that we provided. The goal of the
competition was twofold; first we wanted students to register with
their Facebook account, thereby enabling us to study their online
social network, and second we wanted to see which major could

Figure 2. Sensible Data openPDS architecture. This system is used in the 2013 deployment and consists of three layers: platform, services, and
applications. The platform contains element common for multiple services (in this context: studies). The studies are the deployments of particular
data collection efforts. The applications are OAuth2 clients to studies and can submit and access data, based on user authorizations.
doi:10.1371/journal.pone.0095978.g002

Measuring Large-Scale Social Networks with High Resolution
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informed consent (control & understanding)
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which version each participant has seen and accepted. A single
page overview of the status of the authorizations, presented in
Figure 3, is an important step in moving beyond lengthy,
incomprehensible legal documents accepted by the users blindly
and giving more control over permissions to the participant.

In the 2013 deployment, the participants could access all their
data using the same API as the one provided for the researchers
and application developers. To simplify the navigation, we
developed a data viewer application as depicted in Figure 4,
which supports building queries with all the basic parameters in a
more user-friendly way than constructing API URLs. Simply
having access to all the raw data is, however, not sufficient, as it is
really high-level inferences drawn from the data that are important
to understand, for example Is someone accessing my data to see how fast I
drive or to study population mobility? For this purpose, we promoted the
development of a question & answer framework, where the high-

level features are extracted from the data before leaving the server,
promoting better participant understanding of data flows. This is
aligned with the vision of the open Personal Data Store [147].

Finally, for the purposes of engaging the participants in the
discussion about privacy, we published blogposts (e.g. https://
www.sensible.dtu.dk/?p = 1622), presented relevant material to
students, and answered their questions via the Facebook
page(https://www.facebook.com/SensibleDtu).

Results and Discussion

As described in the previous sections, our study has collected
comprehensive data about a number of aspects regarding human
behavior. Below, we discuss primary data channels and report
some early results and findings. The results are mainly based on
the 2012 deployment due to the availability of longitudinal data.

Figure 3. Authorizations page. Participants have an overview of the studies in which they are enrolled and which applications are able to submit
to and access their data. This is an important step towards users’ understanding what happens with their data and to exercising control over it. This
figure shows a translated version of the original page that participants saw in Danish.
doi:10.1371/journal.pone.0095978.g003

Measuring Large-Scale Social Networks with High Resolution
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to understand, for example Is someone accessing my data to see how fast I
drive or to study population mobility? For this purpose, we promoted the
development of a question & answer framework, where the high-

level features are extracted from the data before leaving the server,
promoting better participant understanding of data flows. This is
aligned with the vision of the open Personal Data Store [147].

Finally, for the purposes of engaging the participants in the
discussion about privacy, we published blogposts (e.g. https://
www.sensible.dtu.dk/?p = 1622), presented relevant material to
students, and answered their questions via the Facebook
page(https://www.facebook.com/SensibleDtu).

Results and Discussion

As described in the previous sections, our study has collected
comprehensive data about a number of aspects regarding human
behavior. Below, we discuss primary data channels and report
some early results and findings. The results are mainly based on
the 2012 deployment due to the availability of longitudinal data.

Figure 3. Authorizations page. Participants have an overview of the studies in which they are enrolled and which applications are able to submit
to and access their data. This is an important step towards users’ understanding what happens with their data and to exercising control over it. This
figure shows a translated version of the original page that participants saw in Danish.
doi:10.1371/journal.pone.0095978.g003

Measuring Large-Scale Social Networks with High Resolution
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Abstract

Understanding how people interact and socialize is important in many contexts from disease control to urban planning.
Datasets that capture this specific aspect of human life have increased in size and availability over the last few years. We
have yet to understand, however, to what extent such electronic datasets may serve as a valid proxy for real life social
interactions. For an observational dataset, gathered using mobile phones, we analyze the problem of identifying transient
and non-important links, as well as how to highlight important social interactions. Applying the Bluetooth signal strength
parameter to distinguish between observations, we demonstrate that weak links, compared to strong links, have a lower
probability of being observed at later times, while such links—on average—also have lower link-weights and probability of
sharing an online friendship. Further, the role of link-strength is investigated in relation to social network properties.
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Introduction

Recognizing genuine social connections is a central issue within
multiple disciplines. When do connections happen? Where do they
take place? And with whom is an individual connected? These
questions are important when working to understand and design
urban areas [1,2], studying close-contact spreading of infectious
diseases [3–5], or organizing teams of knowledge workers [6–9]. In
spite of their importance, measuring social ties in the real world
can be difficult.

In classical social science the standard approach is to use self-
reported data. This method, however, is only practical for
relatively small groups and suffers from cognitive biases, errors
of perception, and ambiguities [10]. Further, it has been shown
that the ability to capture behavioral patterns via self-reported
data is limited in many contexts [11]. A different approach for
uncovering social behavior is to use digital records from emails and
cell phone communication [12–19]. Although such analyses have
improved our understanding of social ties, they have left many
important questions unanswered—are electronic traces a valid
proxy for real social connections? Eagle et al. [20] began to answer
this question by including a spatial component as part of their
data, using the short range (*10m) Bluetooth sensor embedded in
study participants’ smartphones to measure physical proximity.
Their results show that proximity data closely reflects social
interactions in many cases. But since it is easy to think of examples
where reciprocal Bluetooth detection does not correspond to social
interaction (e.g. transient co-location in dining hall) the question
remains, which observations correspond to actual social connec-
tions and which are just noise?

Multiple alternatives have been proposed to Bluetooth for
sensor-driven measurement of social interactions, each with
particular strengths and weaknesses [21–31]. For example, Radio

Frequency Identification (RFID) badges have short interaction
ranges (1{4m) and measure only face-to-face interactions, thus
solving many of the resolution problems posed by Bluetooth
[30,31]. This approach, however, confines interactions to occur
within specific areas covered by special radio receivers and
requires participants to wear custom radio tags on their chests at
all times—unlike Bluetooth which is ubiquitous across many types
of modern electronic devices.

Our investigation digs into the role of Bluetooth signal
strength, using a dataset obtained from applications running
on the cell phones of 134 students at a large academic
institution. Each phone records and sends data to researchers
about call and text logs, Bluetooth devices in nearby proximity,
WiFi hotspots in proximity, cell towers, GPS location, and
battery usage [32]. In addition, we combine the data collected
via the phones with online data, such as social graphs from
Facebook for a majority of the participants. The study
continuously gathers data, but in this paper we focus on
Bluetooth proximity data gathered for 119 days during the
academic year of 2012–2013. Specifically, we focus on the
received signal strength parameter and propose a methodology
that applies signal strength to distinguish between social and
non-social interactions. We concentrate on the signal param-
eter because it is present in a majority of digitally recorded
proximity datasets [30,32,33] and in addition, it also suggests a
rough estimate for the distance between two devices. Applying
the method on our data, we compare the findings to a null
model and demonstrate how removing links with low signal
strength influences network structure. Moreover, we use
estimated link-weights and an online dataset to validate the
friendship-quality of removed links.
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Figure 1. Bluetooth signal strength (RSSI) as a function of distance. A: Scans between two phones.
Measurements are per distance performed every five minutes over the course of 7 days. Mean value and
standard deviation per distance are respectively µ
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Removing links

This section outlines various strategies for removing links from the network. Fig. 4A shows an illustration
of the raw proximity data for a single time-bin, a link is drawn if either i ! j or j ! i. Thickness of
a link represents the strength of the received signal. For the thresholded network (Fig. 4B) we remove
links according to the strength of the signal (where we assume the weaker the signal the greater the
relative distance between two persons). To estimate the e↵ect of the threshold we compare it to a null
model, where we remove the same number of links, but where the links are chosen at random, illustrated
Fig. 4C. To minimize any noise the random removal might cause, we repeat the procedure n = 100
times, each time choosing a new set of random links, with statistics averaged over the 100 repetitions.
To check whether thresholding actually emphasizes face-to-face links, we additionally compare it to a
control network, where we remove links with signal strengths above or equal to the threshold, Fig. 4D;
this procedure is also repeated multiple times. In a situation where there are more links below the
threshold than above, we will remove fewer links for the latter compared to the other networks.
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Figure 2. Distributions of signal strength for the respective distances. A: Raw data. Measurements
from both phones are statistically indistinguishable and are collapsed into single distributions, i.e. there is no
di↵erence between whether A ! B or B ! A. B: Average of signal strength per time-bin. C: Maximal value of
signal strength per. time-bin.

Results

Network properties

Now that we have determined a threshold for filtering out noisy links, let us study the e↵ects on the
network properties. Thresholding weak links does not significantly influence the number of nodes present
(N) in the network (Fig. 5A), while the number of links (M) is substantially reduced (Fig. 5B). On
average we remove 2.38 nodes and 32.18 links per time-bin. Social networks di↵er topologically from
other kinds of networks by having a larger than expected number of triangles [37], thus clustering is a key
component in determining the e↵ects of thresholding. Fig. 6 reveals a strong hint that we are, in fact,
keeping real social interactions: random removal disentangles the network and dramatically decreases
the clustering coe�cient, while thresholding conserves most of the average clustering. Average clustering
ratio (hhc

T

i/hc
N

ii) reveals that the clustering in the thresholded network compared to the null model
network on average is 2.38 times larger. These findings suggest that a selection process based on signal
strength greatly di↵ers from that of a random one.
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Figure 7. Link evaluation. A: Probability of link reappearance. For each selection process we remove a
specific set of links. Thresholded, removes links with weak signal strength, Null, removes randomly chosen links,
while the Control removes strong links. The probability for links to reappear within all the next n time-steps is
calculated using Equation 1 and averaging over all time-bins. Boundary conditions are not applied and the
reappearance probability for the last n = 5 bins is not taken into account. B: Average weights. For each
time-bin we calculate w

t

/w
t,background

, where the background weight includes links present in bin t. Brackets
indicate a temporal average across all time-bins, and red line denotes the average background weight.

Discussion

The availability of electronic datasets is increasing, so the question of how well can we use these electronic
clicks to infer actual social interactions is important for e↵ectively understanding processes such as
relational dynamics, and contagion. Sorting links based on their signal strength allows us to distinguish
between strong and weak ties, and we have argued there that thresholding the network boosts the social
signal while eliminating some noise.

The proposed framework is not perfect, in certain settings we remove real social connections while
noisy links are retained. The results indicate that the framework is better at identifying strong links than
removing them. A trend which the link-reappearance probability, link-weights, and online friendship
analysis support. Compared to the baseline we achieve better results than just assuming all proximity
observations as real social interactions. But determining whether a close proximity link is an actual
friendship is much more di�cult. Multiple scenarios exist where people are in close contact but are not
friends, one obvious example is queuing. Each human interaction has a specific social context, so an
understanding of the underlying social fabric is required to fully discern when a close proximity link is
an actual face-to-face meeting. This brings us back to the question of how to determine a real friendship
from digital observations (cf. [1]). Face-to-face meetings may not be the best indicator of friendship; call
logs, text logs, and geographical positions are all factors which coupled with Bluetooth could give us a
better insight into social dynamics and interactions.
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Figure 3. Number of links per type as a function of threshold value. Links are classified as weak if
they are observed less than 120 times in the data, i.e. links that on average are observed less than once per
day—otherwise they are classified as strong. Grouping students into study lines, reveals that links within each
study line have an almost uniform distribution of weights while links across study lines are distributed according
to a heavy-tailed distribution. A threshold of �80 dBm (gray area) removes 1159 weak and 387 strong links and
classifies 97.6% of inter-study line links as weak and 86.7% of intra-study line links as strong.

Figure 4. Networks. A: Raw network; shows all observed links for a specific time-bin. Thickness of a link
symbolizes the maximum of the received signal strengths. B: Thresholded network, we remove links with
received signal strengths below a certain threshold, where dotted lines indicate the removed links. C: Null
model; with respect to the previous network we remove the same amount of links, but where the links are
chosen at random. D: Control network, links with signal strength above or equal to the threshold are removed.

Link evaluation

Sorting links by signal strength and disregarding weak ones greatly reduces the number of links, but do
we remove the correct links, i.e. do we get rid of noisy, non-important links? The fact that clustering
remains high in spite of removing a large fraction of links is a good sign, but we want to investigate this
question more directly. To do so, we divide the problem into two timescales; a short where we consider
the probability that a removed link might reappear a few time-steps later, and a long where we evaluate
the quality of a removed link according to certain network properties. The motivation for both time-scales
is simple. Let’s first consider the short time-scale. We assume that human interactions take place on
a time-scale that is mostly longer than the 5-minute time-bins we analyze here. Thus, if a noisy link
is removed, the probability that it will re-appear in one of the immediately following time-steps should
be low, since no interaction is assumed to take place. We do expect the probability of reappearance in
subsequent timesteps to be significantly greater than zero, since even weak links imply physical proximity.
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Abstract

Understanding both collective and personal human
mobility is a central topic in Computational Social
Science. Smartphone sensing data is emerging as a
promising source for studying human mobility. However,
most literature focuses on high-precision GPS positioning
and high-frequency sampling, which is not always feasible
in a longitudinal study or for everyday applications
because location sensing has a high battery cost. In this
paper we study the feasibility of inferring human mobility
from sparse, low accuracy mobile sensing data. We
validate our results using participants’ location diaries,
and analyze the inferred geographical networks, the time
spent at di↵erent places, and the number of unique places
over time. Our results suggest that low resolution data
allows accurate inference of human mobility patterns.
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Complex problem solving in science, engineering, and business has become a highly collaborative endeavor.
Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and
feedback. Here we bridge the literature on team performance and information networks by studying teams’
problem solving abilities as a function of both their within-team networks and their members’ extended
networks. We show that, while an assigned team’s performance is strongly correlated with its networks of
expressive and instrumental ties, only the strongest ties in both networks have an effect on performance.
Both networks of strong ties explain more of the variance than other factors, such as measured or
self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the
network of strong ties renders these factors non-significant in the statistical analysis. Our results have
consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling
today’s most complex problems.

C
omplex problems in science, engineering, or business are being solved by teams of people working closely
with one another, each with the help of their network. In science, modern experiments require the
collaboration and specialization of many individuals1. For example, a modern Nature paper can have

more than 100 co-authors2 and the number of co-authors of PNAS papers has more than doubled over the last 20
years, reaching an average of 8.4 co-authors per paper3. In businesses, teams of knowledge workers have become
the basic unit carrying out work4. Our ability to solve complex problems increasingly depends on teams of
scientists, engineers, or knowledge workers and their extended information networks5,6.

Qualitative and quantitative study of high-performing teams–an interdependent collection of individuals
working towards a common goal where members share individual and mutual responsibility for the out-
come7–has been an ongoing effort in the social, management, and science of science8–13. Previous studies focused
on how the personalities, technical or cognitive abilities, or the existence of previous collaborations of team
members explain team performance. Recent quantitative studies investigated the determinants of high-perform-
ing teams by studying their structure or pattern of communications14–19.

Accessing to the right piece of information is central to solving complex problems. This information, however,
often only exists in the form of advice, expertise, implicit knowledge, or experience and flows through social ties.
Consequently, the structure of social interactions has been shown to enhance or hinder access to such resources.
Building on advances in social network analysis, empirical research showed the impact of an individual’s
information or collaboration network on her performance20–26. Amongst others, the impact of an individual
position in the information network has been investigated through measures of node degree, centrality, structural
holes, closure, and social diversity27–32.

Both within-team and extended information networks are useful. Within-team networks allow for engage-
ment, collaboration, and the higher level of information sharing needed for teams to perform15. Frequent inter-
actions between team members have been shown to help them become familiar with one another and to positively
impact their teamwork33. Extended networks of informal ties of team members have been shown to be the vector
for key exchanges of information15. Information often flows through these ties despite the existence of formal
coordination and communication mechanisms. These informal extended ties have been shown to be particularly
important in competitive environments34. This work, at the intersection of information networks and team
performance, studies the problem solving abilities of teams as a function of the within-team network structure
and extended information network in a real working environment. We show that, for both within team and
extended ties networks, only the strongest ties matter.
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