Smart Cities

Solutions for a fossil-free future

http://www.smart-cities-centre.org

Henrik Madsen, Alfred Heller, Ivan Herrmann, Niamh O'Connell,

Background and Motivation

Potentials for renewable energy

- Scenarie: We want to cover the worlds entire need for power using wind power.
- How large an area should be covered by wind turebines?

Potentials for renewable energy

- Scenarie: We want to cover the worlds entire need for power using wind power.
- How large an area should be covered by wind turebines?
- Conclusion: Use intelligence
- Calls for Smart Cities Solutions.

Status: Wind Power in Denmark **Notice - wind only:**

Key figures for wind power*

	2013	2012	
Wind power generation	11.1 billion kWh	10.3 billion kWh	
Electricity consumption (including loss in the electricity grid)	33.5 billion kWh	34.1 billion kWh	
Wind power share of electricity consumption the entire year	33.2%	30.1%	
Wind power share of electricity consumption in December	54.8%	33.5%	
Wind power capacity at the end of the year	4,792 MW	4,166 MW	
Energy content of the wind	Approx. 93% of a standard year	Approx. 102% of a standard year	

Latest production data for Tyra: 6.061.111 kWh Applicable for 15. februar 2014 11:00-12:00

Lille Torup gas storage facility Entry: 824.732 kWh/h

Calorific value: 12,150 kWh/m3

Egtved Calorific value: 12,213 kWh/m3

CO2 emissionsfaktor: 56,76 kg/GJ

Ellund Exit: 1.002.678 kWh/h Calorific value: 12,228 kWh/m3

Natural gas right now

Gas flow - kWh/h:

Nybro entry 5.882.672
Ellund exit 1.002.678
Dragør exit 1.405.760
Energinet.dk Gas Storage 824.732
DONG Storage 0
Exit Zone 4.776.523

56,76 kg/GJ

LEGEND

CO2 emission factor

Dragør Exit: 1.405.760 kWh/h

Calorific value: 12,234 kWh/m3

Stenlille gas storage facility 0 kWh/h Calorific value: 12,022 kWh/m3

Last updated 15. februar 2014 12:31

Solar district heating in Denmark

Transition in the Energy World

The rapidly changing energy world calls for a the next generation of tools for simulation, planning, optimization, decision support, control and operation in Cities. These tools calls for research focusing on:

- Increasing penetration of variable RE in Cities
- Increasing ultra high energy efficiency buildings and controllable loads
- New data, information, communications and controls
- Electrification of transportation and alternative fuels
- Enable (virtual) energy storage by energy systems integration
- Interactions between electricity/thermal/fuels/data pathways
- Increasing system flexibility and intelligence

Project Ideas Background, Concepts, Methodology, Objectives and Partners

Concept

Integration based on *ITC* solutions leading to methods for operation and planning for future energy systems in cities

CITIES – Hypothesis

The **central hypothesis** of CITIES is that by **intelligently integrating** currently distinct energy flows (heat, power, gas and biomass) in urban environments we can enable very large shares of renewables, and consequently obtain substantial reductions in CO2 emissions.

Intelligent integration will enable lossless 'virtual' storage on a number of different timescales.

Scientific Objectives

To establish methodologies and ITC solutions for design and operation of integrated electrical, thermal, fuel pathways at all scales

Measures to activate flexibility

Interactions between power, gas, DH, and biomass systems

Societal Objectives

To establish methods and realistic scenarios for ultimately achieving independent from fossil fuels by harnessing the latent flexibility of energy systems in Cities through intelligence, integration, and planning.

Energy Systems Integration and Management

Key Outcomes

Key Outcomes

- Operational methods and scenarios for energy systems integration and management, paving scenarios towards a fossil free future
- Component level, modular and aggregate models of energy supply, consumption, and transmission, suitable for simulation, control and optimisation frameworks
- Market structures that support energy systems integration
- Modular forecasting and control models for a variety of energy system components, including their interactions
- Integration of short-term operational models in models for long-term planning.
- Models of energy consumption and production accounting for their stochastic and dynamic features.
- Methods for controlling energy consumption and demand side management.
- CITIES is aiming at being a leading knowledge centre for Smart Cities development and operational tools.
- Synergies with existing and new smart cities development projects
- a couple of examples follows ...

Energy Labelling of Buildings

- Today building experts make judgements of the energy performance of buildings based on drawings and prior knowledge.
- This leads to 'Energy labelling' of the building
- However, it is noticed that two independent experts can predict very different consumptions for the same house.

Results

	UA	$\sigma_{ m UA}$	gA^{max}	wA_E^{max}	wA_S^{max}	wA_W^{max}	T_i
	$W/^{\circ}C$		W	$W/^{\circ}C$	$W/^{\circ}C$	$W/^{\circ}C$	$^{\circ}\mathrm{C}$
4218598	211.8	10.4	597.0	11.0	3.3	8.9	23.6
4218600	98.7	10.8	-96.2	23.6	10.1	13.0	22.3
4381449	228.2	12.6	1012.3	29.8	42.8	39.7	19.4
4711160	155.4	6.3	518.8	14.5	4.4	9.1	22.5
4711176	178.5	7.3	800.0	1.9	-7.6	8.5	26.4
4836681	155.3	8.1	591.0	39.5	28.0	21.4	23.5
4836722	236.0	17.7	1578.3	4.3	3.3	18.9	23.5
4986050	159.6	10.7	715.7	10.2	7.5	7.2	20.8
5069878	144.8	10.4	87.6	3.7	1.6	17.3	21.8
5069913	207.8	9.0	962.5	3.7	8.6	10.6	22.6
5107720	189.4	15.4	657.7	41.4	29.4	16.5	21.0

CITIES solution Use of data from Smart Meters

- Automatic energy labelling
- Screening for identifying buildings with a low energy efficiency
- Recommendations:
 - Should they replace the windows?
 - Or put more insulation on the roof?
 - Or tighten the building?
 - Should the wall against north be further insulated?
- Better control of the heat supply
- Methods for demand side management

CITIES Solution: Demand Side Management

Control of Energy Consumption

Contracts / Products

Partners

DFF|**EDB** Danish Partners

EMT NORDIC

International Partners

TOMORROW TODAY

Thanks to DSF (DSF – 1305-00027B) For more information:

hmad@dtu.dk

